322 research outputs found

    Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity

    Get PDF
    The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR) and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies

    safety aspects of people exposed to ultra wideband radar fields

    Get PDF
    The safety aspects of people exposed to the field emitted by ultra wideband (UWB) radar, operating both in the spatial environment and on ground, for breath activity monitoring are analyzed. The basic restrictions and reference levels reported in the ICNIRP safety guideline are considered, and the compliance of electromagnetic fields radiated by a UWB radar with these limits is evaluated. First, simplified analytical approaches are used; then, both a 3-dimensional multilayered body model and an anatomical model of the head have been used to better evaluate the electromagnetic absorption when a UWB antenna is placed in front of the head. The obtained results show that if the field emitted by the UWB radar is compliant with spatial and/or ground emission masks, then both reference levels and basic restrictions are largely satisfied

    Serial Patch Array Antenna for an FMCW Radar Housed in a White Cane

    Get PDF
    The design, realization, and test of the transmitting and receiving antennas for an FMCW radar operating between 24 and 24.25 GHz (ISM band), to be housed in a white cane for improving mobility of visually impaired subjects, have been performed. The coaxial-to-microstrip transition necessary for feeding the antennas has been studied together with the characteristics of serial arrays of increasing number of patches. Based on this study, a serial array with 8 patches has been selected for the transmitting and receiving antennas. The realized structures show a reflection coefficient lower than −10 dB in the ISM band. When the antennas are attached to an FMCW radar board, the radar is able to record reflections from a metallic panel up to a 5 m distance

    S Band Hybrid Power Amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations

    Get PDF
    n this paper, the design, fabrication, and measurements of an S band multi harmonic tuned power amplifier in GaN technology is described. The amplifier has been designed by exploiting second and third harmonic tuning conditions at both input and output ports of the active device. The amplifier has been realized in a hybrid form, and characterized in terms of small and large signal performance. An operating bandwidth of 300 MHz around 3.55 GHz, with 42.3 dBm output power, 9.3 dB power gain and 53.5% power added efficiency PAE (60% drain efficiency) at 3.7 GHz are measured

    Impact of textile on electromagnetic power and heating in near-surface tissues at 26 GHz and 60 GHz

    Get PDF
    With the development of 5th generation (5G) networks the operating frequencies have been progressively expanding towards millimeter waves (MMW). In some exposure scenarii, presence of textiles impacts the interaction of the electromagnetic field radiated by wireless devices with human tissues. We investigate the impact of a textile layer in contact or in proximity of skin on the power transmission coefficient, absorbed power density and temperature rise using a near-surface tissue model at 26GHz and 60 GHz. Cotton and wool are considered as representative textiles. Our results demonstrate that the textile in contact with skin increases the absorbed power density up to 41.5% at 26 GHz and 34.4% at 60 GHz. The presence of an air gap between a textile and skin modifies the electromagnetic power deposition in the tissues depending on the thicknesses and permittivity. The temperature rise increases compared to the bare skin by up to 52% at 26GHz and 46% at 60 GHz with the textile in direct contact with skin. With an air gap, for typical textile thicknesses, the temperature variations range from −3.5% to 20.6% and from −11.1% to 20.9% at 26GHz and 60 GHz, respectively

    On the Fly Orchestration of Unikernels: Tuning and Performance Evaluation of Virtual Infrastructure Managers

    Full text link
    Network operators are facing significant challenges meeting the demand for more bandwidth, agile infrastructures, innovative services, while keeping costs low. Network Functions Virtualization (NFV) and Cloud Computing are emerging as key trends of 5G network architectures, providing flexibility, fast instantiation times, support of Commercial Off The Shelf hardware and significant cost savings. NFV leverages Cloud Computing principles to move the data-plane network functions from expensive, closed and proprietary hardware to the so-called Virtual Network Functions (VNFs). In this paper we deal with the management of virtual computing resources (Unikernels) for the execution of VNFs. This functionality is performed by the Virtual Infrastructure Manager (VIM) in the NFV MANagement and Orchestration (MANO) reference architecture. We discuss the instantiation process of virtual resources and propose a generic reference model, starting from the analysis of three open source VIMs, namely OpenStack, Nomad and OpenVIM. We improve the aforementioned VIMs introducing the support for special-purpose Unikernels and aiming at reducing the duration of the instantiation process. We evaluate some performance aspects of the VIMs, considering both stock and tuned versions. The VIM extensions and performance evaluation tools are available under a liberal open source licence

    A Comparison between Multiple-Input Multiple-Output and Multiple-Input Single-Output Radar Configurations for Through-the-Wall Imaging Applications

    Get PDF
    The performances of a multiple-input multiple-output (MIMO) radar, employing 16 equivalent antennas, and multiple-input single-output (MISO) radar, employing 10 antennas, for through-the-wall imaging applications are analyzed. In particular, imaging algorithms based on the Fourier transform (FT) and the multiple signal classification (MUSIC) available in the literature are compared with the FT-MUSIC hybrid algorithm recently developed by the authors. Three different investigations have been performed. The first, performed analytically, refers to a scenario in which a point scatterer is placed in free space, and the second, addressed numerically using the CST full-wave software, refers to a scenario in which two targets are present, while the last was executed in a real scenario where a metal panel is placed behind a tuff wall. All the algorithms and radar configurations were found to be suitable for accurately reconstructing the position of the investigated target. In particular, applying the FT technique, the MISO configuration has a lower cross-range half-power beamwidths (HPBW) than the MIMO one, while the range HPBW is the same for the two radar configurations. Despite the different number of elements present in the two radar configurations, similar range and cross-range HPBW are obtained for both configurations when MUSIC and FT-MUSIC techniques are employed. The field of view for FT and FT-MUSIC is about 45°, while it is less than 15° for the MUSIC algorithm. The HPBWs obtained with the experimental setup are very close to those obtained in the analytical study. Finally, the proposed experimental MISO radar acquires the data in half the time required by the MIMO one. The numerical results, confirmed by the experimental measurements, seem to indicate in the FT-MUSIC technique the one that provides the best performance for the considered radar configurations

    Crystal structure of the ternary complex of Leishmania major pteridine reductase 1 with the cofactor NADP+/NADPH and the substrate folic acid

    Get PDF
    Pteridine reductase 1 (PTR1) is a key enzyme of the folate pathway in protozoan parasites of the genera Leishmania and Trypanosoma and is a valuable drug target for tropical diseases. This enzyme is able to catalyze the NADPH-dependent reduction of both conjugated (folate) and unconjugated (biopterin) pterins to their tetrahydro forms, starting from oxidized- or dihydrostate substrates. The currently available X-ray structures of Leishmania major PTR1 (LmPTR1) show the enzyme in its unbound, unconjugated substrate-bound (with biopterin derivatives) and inhibitor-bound forms. However, no structure has yet been determined of LmPTR1 bound to a conjugated substrate. Here, the high-resolution crystal structure of LmPTR1 in complex with folic acid is presented and the intermolecular forces that drive the binding of the substrate in the catalytic pocket are described. By expanding the collection of LmPTR1 structures in complex with process intermediates, additional insights into the active-site rearrangements that occur during the catalytic process are provided. In contrast to previous structures with biopterin derivatives, a small but significant difference in the orientation of Asp181 and Tyr194 of the catalytic triad is found. This feature is shared by PTR1 from T. brucei (TbPTR1) in complex with the same substrate molecule and may be informative in deciphering the importance of such residues at the beginning of the catalytic process
    • …
    corecore